The following C++ program, using iteration, finds the magic square for a given odd sized number. A magic square is an arrangement of numbers from 1 to n^2 in an [n x n] matrix, with each number occurring exactly once, and such that the sum of the entries of any row, any column, or any main diagonal is the same.
Code:
#include<iostream>
using namespace std;
void magicsq(int, int [][10]);
int main( )
{
int size;
int a[10][10];
cout<<"Enter the size: ";
cin>>size;
if (size % 2 == 0)
{
cout<<"Magic square works for an odd numbered size\n";
}
else
{
magicsq(size, a);
}
return 0;
}
void magicsq(int size, int a[][10])
{
int sqr = size * size;
int i = 0, j = size / 2, k;
for (k = 1; k <= sqr; ++k)
{
a[i][j] = k;
i--;
j++;
if (k % size == 0)
{
i += 2;
--j;
}
else
{
if (j == size)
{
j -= size;
}
else if (i < 0)
{
i += size;
}
}
}
for (i = 0; i < size; i++)
{
for (j = 0; j < size; j++)
{
cout<< a[i][j];
}
cout<<endl;
}
cout<<endl;
}
Output:
Code:
#include<iostream>
using namespace std;
void magicsq(int, int [][10]);
int main( )
{
int size;
int a[10][10];
cout<<"Enter the size: ";
cin>>size;
if (size % 2 == 0)
{
cout<<"Magic square works for an odd numbered size\n";
}
else
{
magicsq(size, a);
}
return 0;
}
void magicsq(int size, int a[][10])
{
int sqr = size * size;
int i = 0, j = size / 2, k;
for (k = 1; k <= sqr; ++k)
{
a[i][j] = k;
i--;
j++;
if (k % size == 0)
{
i += 2;
--j;
}
else
{
if (j == size)
{
j -= size;
}
else if (i < 0)
{
i += size;
}
}
}
for (i = 0; i < size; i++)
{
for (j = 0; j < size; j++)
{
cout<< a[i][j];
}
cout<<endl;
}
cout<<endl;
}
Output:
0 Questions:
Post a Comment